
Pumas@Home 2016 Team Description Paper

Biorobotics Laboratory

National Autonomous University of Mexico, México DF 04510, MEX,
http://biorobotics.fi-p.unam.mx

Abstract. This robot is based on the ViRbot architecture, implemented
by several modules that perform different tasks, through a cross-platform
system called Blackboard together with the ROS platform. This year, our
team focused on navigation in dynamic environments and task planning
using different approaches, also the migration of several of our modules
to the ROS platform.

1 Introduction

The service robots are hardware and software systems that can assist humans
to perform daily tasks in complex environments. To achieve this, a service robot
has to be capable of understanding commands from humans, avoiding static
and dynamic obstacles while navigating in known and unknown environments,
recognizing and manipulating objects and performing several other tasks that a
person might request. This paper describes our service robot Justina and it is
organized as follows:

In section 2 the ViRbot architecture is described as the platform for the robot
software system. Section 3 enumerates the hardware and software components of
robot Justina, and the functionality of each of them is described. Section 4 is an
abstract of the latest research developed in our laboratory in order to improve
the robot’s performance and finally, in section 5, conclusions and future work
are given.

2 Background: Platform and Architecture

This robot is based on the ViRbot architecture for autonomous mobile robot op-
eration [1], which provides a platform for the design and development of software
for general purpose service robots.

The ViRbot architecture defines a human-robot interaction interface made
of three main layers (see figure 1):

– Input layer: Includes all algorithms related to the acquisition of data from
the environment.

– Planning and Knowledge: This layer performs most of the AI algorithms.
– Execution: Includes low-level control and supervision.



3. HARDWARE AND SOFTWARE

Fig. 1: Block diagram of the ViRBot architec-
ture.

The implementation of
ViRbot is made through sev-
eral modules (executables)
that perform well defined
tasks and have a high in-
teraction. The information
exchange between modules
is made through a cen-
tral module called Black-
board (BB), which supports
shared variables, with pub-
lisher/subscriber pattern, and
message passing. Blackboard
was developed with C# and
the .NET framework, and
there are currently APIs to
build BB modules for lan-
guages C#, C++ and python.
It runs on windows and linux-
based systems (with the help

of Mono, the open source implementation of Microsoft’s .NET framework) such
as Ubuntu and Raspbian (as command line interface). Also, a BB module has
been developed for an Android system and a CLIPS interpreter has been used
with the help of PyCLIPS, expanding the number of platforms and languages
available to use with it.

Fig. 2: Communication scheme between Black-
board and ROS.

BB’s commands and shared
variables have a certain equiv-
alence to ROS’s services and
topics respectively. Integra-
tion between modules work-
ing with these platforms has
been accomplished through
the implementation of a Black-
Board Bridge module, which
communicates with both sys-
tems. Figure 2 shows a block
diagram of how we intercon-
nect Blackboard and ROS.

3 Hardware and Software

Robot Justina has the following actuators:

– Differential mobile base (self design) with Arduino Mega for control and
Pololu RoboClaw board as motor driver.

2



4. CURRENT RESEARCH

– Two arms with anthropomorphic design: 7 DOF implemented with 10 Dy-
namixel servomotors and CM-700 microcontroller board for control and path
planning.

– Mechatronic Head with 2 DOF (Pan and tilt) built with Dynamixel servo-
motors.

– Speakers.

and the following sensors:

– One Kinect sensor and one RGB camera.
– Directional microphone.
– Laser rangefinder Hokuyo URG-04LX-UG0

3.1 Software

Fig. 3: Robot Justina

Robot Justina uses computers running both
Linux and Windows, and modules pro-
grammed in C#, C++, Python and CLIPS
[2]. Modules currently running on Justina are:

– Action Planner: Details are given in sub-
section 4.1.

– Simple Task Planner: It is a bank of proce-
dures that involves simple and repetitive
tasks easily achieved by state machines,
e.g. grasping an object, searching for a
face, aligning with an edge, etc.

– Motion Planner: Details are given in sub-
section 4.2.

– Object Finder: This module performs im-
age and point clouds processing, object recognition using SIFT [3] + his-
togram comparison and geometric feature extraction of the environment
(planes, lines, corners, spikes).

– Person Finder: Multiple face detection and recognition using VeriLook SDK
(commercial software).

– Speech Recognition: Throws hypothesis (text strings) of recognized voice
with a confidence ranking using Microsoft SAPI 5.3 [4] (commercial soft-
ware).

– Speech Generator: Voice synthesizer using Microsoft SAPI 5.3 [4] with the
Loquendo Susan voice (commercial software).

4 Current research

4.1 Planning using plan-space search and hierarchical task networks

The task planning is implemented as an expert system with logical program-
ming. It adopts concepts from plan-space search planning and hierarchical task
networks (HTN).

3



4. CURRENT RESEARCH

On the one hand, the task networks would be useful to specify dependencies
between tasks that would be difficult to represent with a detailed description of
the environment and the effects of actions on it, like the ones used in classical
STRIPS-like planners. On the other hand, it uses the plan-space search in order
to make planning as objective oriented as possible, so depending on the current
situation and the currently active tasks, each task can decompose in one plan or
another.

The plan specification is done through facts that represent a hierarchical
structure of tasks, and each task can have several planning rules. The planning
rules would be useful for considering different situations, present in the environ-
ment, so the robot can act accordingly.

A graphical tool for designing the plans was also developed. It uses the for-
malism of High Level Petri Nets (HLPN) to model the planning rules. Each rule
includes one transition that separates its preconditions from its effects. In gen-
eral, places in the Petri nets diagram would be labeled or named with a syntax
that resembles first order logic predicates, and they would correspond with facts
about the world or actions to be executed.

4.2 Navigation based on behaviors

The Navigation system is composed of several subsystems performing different
tasks in different levels of abstraction: a task planner, a set of behaviors con-
trolling the mobile base and another set controlling the mechatronic head, a
localization subsystem, which contains the world representation and a Kalman
Filter for estimating the robot’s position, and a perception module, responsi-
ble for processing the raw sensor data. Figure 4 shows a block diagram of the
different subsystems and its connections.

Task

Planner

Perception
Base

Behaviors

Head

Behaviors

Mobile

Base

Mechatronic

Head
Localization

World

Represen-

tation

Kalman

Filter

Sensors

Fig. 4: The Navigation System

Justina’s perception module includes object and face detection and recog-
nition, natural landmark extraction, speech recognition, detection of obstacles
and their position, skeleton detection and proprioception, that includes odom-
etry and position estimations of the head and arms. The navigation system
uses the subprocesses of odometry, landmark extraction and obstacle detection.

4



4. CURRENT RESEARCH

Landmarks are extracted from laser readings and point clouds generated by the
Kinect sensor, using an algorithm based on the work of [5].

World Representation includes a geometric representation of the obstacles in
the environment and a set of nodes used for path planning. Such path planning
is made using the Dijkstra algorithm, considering information contained in the
world representation and the perception module. Localization is made using a
Kalman Filter.

The mobile base and the mechatronic head are controlled by a set of be-
haviors. Head is moved by two behaviors: the first one tries to point the head
towards the nearest landmarks and the second one, towards the nearest obsta-
cle. Mobile base is controlled by three behaviors. First behavior tries to move
the robot towards a given goal point. The second one, avoids obstacles using
potential fields. Laser readings are used for this purpose. The third behavior is
checking if there are obstacles with which the robot could crash and stops the
robot in case of collision risk.

The navigation system also builds roadmaps when it is moving to improve
the obstacle avoidance. Roadmaps are constructed following the next steps:

– Point cloud acquisition from the kinect sensor.
– Transformation to the robot frame coordinates.
– Separation of free and occupied space (considering the z-coordinate of the

points).
– Clusterization of free and occupied space by vector quantization techniques.

Centroids of free space are taken as nodes to calculate paths and clusters of
occupied space are taken as obstacles. See figure 5. A more detailed description
of the roadmap construction method is given in [6].

(a) Free space clusters are colored in
green and occupied space clusters, in
purple. The black regions are those
points with no depth information.

(b) Resulting environment representa-
tion. Green dots are nodes, purple rect-
angles represent obstacles and the red
lines are the calculated path.

Fig. 5: Roadmap construction.

5



4. CURRENT RESEARCH

4.3 Heterogeneous computing for point cloud processing

For a service robot, it is crucial to process a big amount of sensor’s data in
real-time to understand the environment around and react according to it. To
achieve this, a device with high computing capabilities and concurrent processes
running all the time is needed. Ideally one process for each sensor.

One of the most time consuming tasks in a service robot is the processing
and analysis of 3D point clouds, where several thousand of readings per second
can be obtained from the sensors.

For this reasons, the performance of different algorithms for point cloud pro-
cessing has been tested using different heterogeneous computing systems. The
systems tested are: CPU+GPU, CPU+FPGA, and CPU multicore. The tested
algotihms are:

– Features extraction (normals calculation based on integral images [7])
– 3D planar surface segmentation (using RANSAC [8])

Figure 6 shows an example of the comparison of the execution time for the
RANSAC algorithm using different systems. This algorithm is commonly used
for plane segmentation in a 3D point set.

Fig. 6: Comparison of the RANSAC algorithm using different architectures.

4.4 Low or null texture objects recognition using RGB-D cameras

Currently, several robust technics based on feature extraction and description
exist for object recognition. However, if the objects are low textured, only a few
number of features can be extracted, making the matching process unreliable.
For these cases, we developed a method that combine three characteristics: color,

6



5. CONCLUSIONS AND FUTURE WORK

size and shape, combining the color and depth information for the recognition
process, after a 3D detection and segmentation in a plane for each object.

Color Information is extracted from the HSV space of the object’s pixels and
it is represented by the histogram of the Hue component, but only for pixels with
Saturation and Value above certain threshold. For pixels below these thresholds,
two more bins are added to the histogram. For campaign histograms we used
the histogram Intersection [9].

The size and shape is estimated from the object’s point cloud, which are
obtained using an oriented bounding box (OBB) of the point cloud as follow:
the base of the OBB is obtained from the oriented bounding rectangle of the
projection of the points in the plane below them. The heights are obtained from
the maximum distance of the points to the plane. The shape is characterized us-
ing the Hu Moments [10] of the convex hull calculated from the points projected
over the plane below them.

For the recognition process we compare in three steps: size, shape and color
characteristics, removing candidates below a certain threshold for each step. At
the end, from the remaining candidates, we select the best one according to a
color-based similarity function.

These method has been tested experimentally in the Rocking robotics compe-
tition, where the team Pumas obtained a second place in the “object perception
test”, showing fast and robust results for changes in light , scale, and rotation
in a plane parallel to the plane below the object. Figure 7 shows an example of
object recognition on a shelf (multiple planes).

(a) Point clouds corresponding to each
segmented object.

(b) Objects can be segmented even
with occlusions.

Fig. 7: Example of object segmentation on several planes.

5 Conclusions and future work

The ViRbot system has been successfully tested in the Robocup@Home category
since the Robocup competition of Atlanta 2007. The team has get into the finals

7



5. CONCLUSIONS AND FUTURE WORK

the last two years (2014 and 2015) in this competition. Also, in 2014, the team
participated in the RoCKIn Competition wining a 1st place in “Catering for
Granny Annie’s Comfort” test and a 2nd place in the “Spech Understanding”
test. In the 2015 edition of the same competition, the team won the second place
in the “Object perception” test.

In these years, the full system has been improved having reliable performance
and showing promising results. Also the Blackboard system grants us a versa-
tile platform for developing subsystems, without the restriction of an operating
system or a specific programming language.

As future work, algorithms for object and face recognition based on 3D fea-
tures are being developed. Also, SLAM techniques are being tested using 3D
information. For the manipulation task, a new control algorithm and a path
planning system will be implemented for the arms module.

References

1. Jesus Savage and et al. Virbot: A system for the operation of mobile robots.
In Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and Frank Dellaert, editors,
RoboCup 2007: Robot Soccer World Cup XI, volume 5001 of Lecture Notes in Com-
puter Science, pages 512–519. Springer Berlin Heidelberg, 2008.

2. Gary Riley. CLIPS Reference Manual Version 6.0. Technical Report Number JSC-
25012. Software Technology Branch, Lyndon B. Johnson Space Center, Houston,
TX, 1994.

3. David G. Lowe. Distinctive image features from scale-invariant keypoints, 2003.
4. Microsoft. Speech server - microsoft corporation. http://www.microsoft.com/

speech/speech2007/default.mspx, 01 2011.
5. R. Yan, J. Wu, W. Wang, S. Lim, J. Lee, and C. Han. Natural corners extrac-

tion algorithm in 2d unknown indoor environment with laser sensor. In Control,
Automation and Systems (ICCAS), 2012 12th International Conference on, pages
983–987. IEEE, 2012.

6. Marco Negrete, Jesús Savage, Jesús Cruz, and Jaime Márquez. Parallel imple-
mentation of roadmap construction for mobile robots using rgb-d cameras. In
OGRW2014, pages 184–187, 2014.

7. Dirk Holz, Stefan Holzer, RaduBogdan Rusu, and Sven Behnke. Real-time plane
segmentation using rgb-d cameras. In Thomas Röfer, N.Michael Mayer, Jesus
Savage, and Uluc Saranlı, editors, RoboCup 2011: Robot Soccer World Cup XV,
volume 7416 of Lecture Notes in Computer Science, pages 306–317. Springer Berlin
Heidelberg, 2012.

8. Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, June 1981.

9. Michael J Swain and Dana H Ballard. Color indexing. International journal of
computer vision, 7(1):11–32, 1991.

10. Ming-Kuei Hu. Visual pattern recognition by moment invariants. Information
Theory, IRE Transactions on, 8(2):179–187, 1962.

8


