KgpKubs Team Description Paper
Robocup 3D Simulation League 2016

Akshay Gupta, Shrey Garg, Abhinav Agarwal, Nishant Nikhil, Vaibhav
Agarwal, and Ishaan Sang

Indian Institute of Technology, Kharagpur
West Bengal, India
shrey91@gmail.com, akshaysngupta@gmail.com

Abstract. This paper describes the developments by Kgpkubs team
in order to compete in Robocup 3D Simulation League 2016. This is
the first time we are participating in an International Humanoid related
event. This paper describes the working of the High Level Strategy which
we have implemented using Delaunay Triangulation and Inter Robot
Communication.

1 Introduction

Kgpkubs is a team from IIT Kharagpur, India. It aims to make autonomous
soccer playing robots.For this, the team is currently focusing on 3D Simulation
and Small Size League Event in Robocup. Students from all departments and
years are part of this including undergraduates and post-graduates. The prin-
cipal investigator for the project is Prof. Jayanta Mukhopadhyay and it is also
mentored by Prof. A.K. Deb, Prof. D.K. Pratihar and Prof. Sudeshna Sarkar. We
have previously participated in FIRA RoboWorld Cup in the years 2013-2015 in
the Mirosot League. In 2015, we secured Bronze position in the same. We aim
to learn and emerge as a competent team in the upcoming Robocup 2016.

This work is organized as follows. First, we give an overview of our base
architecture and strategy in Section [2] Section [5] describes the design of the
communication module. Section [3| describes about the Positioning and [4] about
the Role Assignment Algorithm. Section [] descibes about the Tactics we have
developed to efficiently use the above system. Section [7] descibes our work on
kicking.

2 Overview

Our base architecture is based on team libbats code available on Github https:
//github.com/sgvandijk/libbats. The code is highly modular and provides
us with the flexibility to modify and develop easily.

Our strategy is based on using a mix of Delaunay Triangulation for proper
positioning of robots on the field and assigning tactics for carrying out specific

https://github.com/sgvandijk/libbats
https://github.com/sgvandijk/libbats

tasks. For Positioning, Every robot performs calculation of positions using De-
launay Triangulation for all robots and then uses Hungarian Algorithm to find
the position assignment for each robot. This result is then communicated by
each robots taking turns. Upon receiving the results from the other 10 robots,
the robot performs a voting to obtain their position and roles.

3 Positioning Module

In soccer, player positioning and role allocation is a very important aspect of
the game. Meticulous player positioning affects the general temperament of the
game and proper collaboration of various tactics is vital for a team to function
efficiently.

Kgpkubs uses Voronoi-Cell Delaunay Triangulation method to generate and
co-ordinate player positions with respect to the varying circumstances. Voronoi
Cells are the result of a partitioning of the space into small regions based on
their distances from their focal point. A point in a plane, say x, is said to lie in
the Voronoi cell of a point y , if and only if the point x is more close to point y
than any other point in the space.

Delaunay triangulation is the Dual graph of Voronoi cell plane. Hence, Delau-
nay triangles ensure that no other focal point lie inside the circum-circle of the
Delaunay triangle formed. Also, due to this property it tends to avoid skinny
triangles. As a result, interpolating any point inside the triangle yields to a
smooth-gradient continuous equation in terms of the coordinates of the vertices
of the triangle.

The algorithm used to generate player positions uses statistical data (bot
and ball positions under different conditions of the game) and generates a data
set of agent positions with respect to certain ball positions. In all 32 ball posi-
tions in strategic locations were identified and triangulated using the incremental
algorithm to generate Delaunay triangles. Once the triangles are generated, the
Gouraud Shading algorithm yields the value of bot positions at any given point
in terms of the values of bot positions stored at the vertices of the triangle
enclosing it.

Let there be a Delaunay triangle formed from vertices P1, P2 and P3. Output
values of bot positions is denoted by O(P1), O(P2) and O(P3). Now suppose
we intend to find the value of bot positions (output value) at a certain point
P inside the triangle P1 : P2 : P3. The Gouraud shading algorithm works as
follows:

e Calculates I, the intersection point of the segment P2 : P3 and the line
P1:P.

e The output value at I, O(I), is calculated as: O(I) = O(P2) + (O(P3) —
O(P2)) *m1/(ml + nl) where,
ml = lengthofsegmentlI : P2
nl = lengthofsegmentl : P3

e Finally, the output value at point P is given as: O(P) = O(P1) + (O(I) —
O(P1)) * m2/(m2 + n2) where,

m2 = lengthofsegmentP : P1
n2 = lengthofsegmentP : I

Fig. 1. Delaunay Triangles formed

4 Role Assignment Module

We use hungarian algorithm which solves the role assignment problem in poly-
nomial time. Time complexity of this algorithm is O(n?). At every one second,
as per the ball position, we get a set of target points from voronoi triangulation.
We did not run the Voronoi updation after every few cycles so as to prevent
associated penalties, like:

e To save time as Voronoi updation is a computationally-expensive action.
e To prevent erratic bot behaviour arising due to sudden change in ball position.

These set of target points are then matched to players on field by hungarian
algorithm. The cost function used for hungarian algorithm is euclidean distance
between bot’s current position and target location. It is also easy to see visualize
that using this type of role matching has following properties

(a) The collisions are mostly avoided.
(b) Longest distance is minimized
(¢) It is dynamically consistent

5 Communication Module

In Robocup 3d Simulation, the humanoid agents have limited visibility. For
proper execution of our strategy, we require every agent to know the position
of every other agent in our team. This will enable the agents to have better
understanding of the current game situation and hence make better decisions.
In Robocup 3d Simulation, each agent can broadcast information to other agents.
The server allows broadcasting of 20 bytes of data in every two cycles. This data
is received by other agents in the next cycle.

At one point of time, we ensure that only one agent transmits data. Each
agent takes turns to send data according to its uniform number(unum).The data
sent is encoded so as to reduce the space needed to send it. There are 83 ASCII
characters which we use to encode our data. We currently use 16 of the 20 bytes
provided to transmit the following:

e 4 bytes: Ball Position - It may happen that the ball is not visible to an agent.
Hence ball position is sent to all the agents.

e 4 bytes: Agent Position - This is sent because each agent only has the up-
dated positions of the agents in in visibility region.

e 4 bytes: Role Assignment - Assigning specific roles to agents as and when
needed.

e 4 bytes: Current time - To ensure synchronization and take care of messages
that were dropped or not received.

e 2 bytes: For certain offsets that we use to trasnmit the ball and agent posi-
tions.

6 Tactics

Although we uses Delaunay triangulation method to generate bot positions at
certain instances of the game, it is not always possible to assign a predefined
position to all agents. There is a need to obtain a separate tactic for those cases
which may not yield desirable results with a predefined tactic data set. These
cases are the most dynamic and important of all as they critically affect minor
requisites which may arise during the game.

Goalkeeper is a static member of the game. It doesn’t switch it functionality
with any other bot on the field. It occupy the near-to-goal area of the field and
is most sensitive to minor changes in ball position and velocity. The goalkeeper
dives when it knows the interpolated ball position is out of its reach in a given
time window. Hence, the goalkeeper decides when to dive as an incorrectly timed
or useless dive may actually do more bad than good. So, by means of data
obtained from ball velocity and position, its expected destination point and
arrival time is calculated. The maximum velocity for a bot is previously known
and this is used to calculate the time required for the goal-keeper to reach its
destination. If this time is more than the arrival time of the ball, the goal-keeper
moves to such a distance so that it is within a distance from the destination
point equal to it’s height and then takes a dive.

The on-ball bot is arguably the most dynamic bot on the field. The bot
closest to ball is usually assigned this position. It is responsible to take the ball
forward and to block a bot which is coming with the ball.

7 Kicking

(a) Right Kick (b) Left Kick

Fig. 2. Kicking

Currently, we have implemented static kicking. We used the base of libbats
kicking sequence(motion sequence controller) and were able to kick the ball af-
ter tweaking with parameters and by applying a better lean functionality. Our
current design, being a static one, takes care as to not kick the ball out of the
field and to implement kick only if the oppponent bots are apart by a certain
distance to prevent being dispossesed by them after kicking. We intend to im-
prove on our current design, which exhibits small range of kick presently, by
using spline interpolation for better dynamic kicking.

8 Future Work

We aim to implement a walking module based on ZMP reference. We are also
implementing spline interpolation for dynamic kicking and aim extend the com-
munication module to provide functionality for announcement-based events like
passing and receiving.

Acknowledgements

The team also acknowledges the mentorship and guidance of our professors Prof.
Jayanta Mukhopadhyay, Prof. Sudeshna Sarkar, Prof. Alok Kanti Deb and Prof.
Dilip Kumar Pratihar. This research is supported by Sponsored Research and
Industrial Consultancy(SRIC), IIT Kharagpur. We also thank our former team
members who made all of this possible.

References

1. Akiyama, Hidehisa, and Itsuki Noda. ”Multi-agent positioning mechanism in the
dynamic environment.” RoboCup 2007: Robot soccer world cup XI. Springer Berlin
Heidelberg, 2007. 377-384.

2. MacAlpine, Patrick, Francisco Barrera, and Peter Stone. ”Positioning to win: A
dynamic role assignment and formation positioning system.” RoboCup 2012: Robot
Soccer World Cup XVI. Springer Berlin Heidelberg, 2013. 190-201.

3. Barrett, Samuel, et al. ”Austin Villa 2011: Sharing is caring: Better awareness
through information sharing.” The University of Texas at Austin, Department of
Computer Sciences, Al Laboratory, Tech. Rep. UT-AI-TR-12-01 (2012).

4. Erbatur, Kemalettin, and Okan Kurt. ”Natural ZMP trajectories for biped robot
reference generation.” Industrial Electronics, IEEE Transactions on 56.3 (2009):
835-845.

5. Strom, Johannes, George Slavov, and Eric Chown. ” Omnidirectional walking using
zmp and preview control for the nao humanoid robot.” RoboCup 2009: robot soccer
world cup XIII. Springer Berlin Heidelberg, 2009. 378-389.

6. Jun, Youngbum, Robert Ellenburg, and Paul Oh. ”From concept to realization:
designing miniature humanoids for running.” J. on Systemics, Cybernetics and
Informatics 8.1 (2010): 8-13.

7. Liu, Juan, et al. ” Apollo3D Team Discription Paper.”

	KgpKubs Team Description Paper

